Isolasi dan Karakterisasi Mikrob Pendegradasi Senyawa Nitril

Ahmad Thontowi (1) , Bambang Sunarko (2)



Biotransformation of nitrile compound using microbe represents the best way in eliminating  toxicity. Besides, microbes and enzymes of nitriles degradation can be used in synthesis of various chemical compounds with a high economic value. The purpose of this research is to obtain microbial potential for nitriles degradation, to obtain information of physiological of chosen microbe and the characteristic of its enzyme. We have conducted are isolation and selection of microbial nitriles degradation, perception of growth pattern, determination of influence various and concentration of nitriles on microbial growth, determination of enzymes specificity and inductivity, and determination of optimum pH and temperature. The result of microbial isolation from various sources of waste obtained by 12 isolates at acetonitrile, 18 isolates at benzonitrile, 8 isolates at adiponitrile, 1 isolate at lactonitrile, and 1 isolate at ß- aminopropionitrile. GLB5 isolate was selected from 46 isolates, because this isolate can grow at some tested nitriles. The best growth of GLB5 isolate in acetonitrile 360 mM, benzonitrile 30 mM, 3-sianopiridin 15 mM, and ß- aminopropionitrile 140 mM. The growth of GLB5 isolate in acetonitrile 360 mM were experienced a lag phase during 8 hours, and an exponential phase during 40 hours. Time of cell doubling during 7 hours and 42 minutes, and specific growth rate (µ) equal to 0,09 h-1. The character of nitriles degradation enzymes from GLB5 whole cell was inductive, with optimum activity at pH and temperature equal to 7.2 and 40oC.

Kata Kunci

biotransformation, nitrile compound, microbe

Teks Lengkap:



Acharya, A. and Desai, A.J. 1997. Studies on utilization of acetonitrile by Rhodococcus erythropolis A10. World J. Microbiol. Biotechnol. 13:175-178.

Babu, G.R.V., Wolfram, J.H., Marian, J.M. and Chapatwala, K.D. 1995. Pseudomonas marginalis its degradative capability on organic nitriles and amides. Appl. Microbiol. Biotechnol. 43:739-745.

Bengis-Garber, C., and Gutman, A.L. 1989. Selective hydrolysis of dinitriles into cyano-carboxylic acids by Rhodococcus rhodochrous N.C.I.B. 11216. Appl. Microbiol Biotechnol. 32:11-16.

Bhalla, T.C., A. Miura, A. Wakamoto, Y. Ohba, and K. Furahashi. 1999. Asymmetric hydrolysis of α-aminonitriles to optically active amino acids by nitrilase of Rhodococcus rhodochrous Pa-34. Appl. Microbiol. Biotechnol. 37:184-190.

Chapatwala, K.D., Babu, G.R.V., Armstead, E.R., White, E.M. and Wolfram, J.H. 1995. A kinetic study on the bioremediation of sodium cyanide and acetonitril by free and immobilized cells of Pseudomonas putida. Appl. Biochem. Biotechnol. 51/52: 717-726.

Jallageas, J.C., A. Arnaud, and P. Galzy. 1980. Bioconversions of nitriles and their applications. Adv. Biochem. Eng. 14:1-32.

Kobayashi, H. and S, Shimizu. 2000. Nitrile Hydrolases. J. Chem Biology. 4 : 95-102.

Kobayashi, M. B, Fujita and I, Turner Jr. 1996. Hyperinduction of nitrile hydratase activity indole 3-acetonitrile in Agrobacterium tumefaciens. Appl. Microbio.Biotechnol.45, 176-181.

Langdahl, B.R., Bisp, P., and Ingvorsen, K. 1996. Nitrile hydrolysis by Rhodococcus erythropolis BL1, an acetonitrile-tolerant strain isolated from a marine sediment. Microbiology. 142:145-154.

Linardi, V.R., Dias, J.C.T. and Rosa, C.A. 1996. Utilization of acetonitrile and other aliphatic nitriles by Candida famata strain. FEMS Microbiol. Lett.144:7-71.

Macadam, A.M., and C.J. Knowles. 1985. The stereospecific bioconversion of α-aminopropionitrile to L-alanine by an immobilized bacterium isolated from soil. Biotech. Lett. 7:865-870.

Meyer, O. and H.G. Schlegel. 1983. Biology of aerobic carbon monoxide oxidizing bacteria. Ann. Rev. Microbiol. 37: 227-310.

Moreau, J.L, S. Azza, A. Arnauld, and P. Glazy. 1993. Purification and characterization of an adipamidase from a mutant strain of Brevibacterium sp. involved in dinitrile degradation. Biosci Biotech Biochem 57:294-296.

Nagasawa, T., H. Shimizu and H.Yamada. 1993. The superiority of the third generation catalyst, Rhodococcus rhodochrous J1 nitrile hydratase, for industrial production of acrylamide. Appl. Micobiol. Biotechnol. 40 : 189-195

Pfennig N. 1974. Rhodopseudomonas globiformis sp., a new species of the Rhodospirillaceae. Arch Microbiol. 100 : 197-206.

Sulistinah, N, B. Sunarko, and A. Thontowi. 2002. Metabolisme benzonitril oleh Flavobacterium sp. NUB1. Jurnal Biologi Indonesia. 3(3):219-226.

Sunarko, B. 1998. Degradasi asetonitril dengan sel imobil Corynebacterium UBT 9. J. Biol. Indonesia. 2:73-82.

Vaughn, P.A., Cheetham, P.S.J. and Knowles, C.J. 1998. The utilization of pyridine carbonitriles and carboxamides by Nocardia rhodochrous LL100-21. J. Gen. Microbiol. 134:1099-1107.

Watanabe, I., Y. Satho, and K. endomoto. 1987. Screening, isolation and taxonomical properties of microorganisms having acrylonitrile-hydrating activity. Agric. Biol. Chem. 51:3193-3199.

Yamamoto, K. Ueno Y. Otsubo K. Yamane H. Komatsu KI. and Tani Y. 1992. Efficient conversion of dinitrile to mononitrile-monocarboxylic acid by Corynebacterium sp. C5 cells during tranexamic acid synthesis. J of Fer and Bioeng. 73(2):125-129.

Article Reads

Total: 1245 Abstrak: 409 PDF: 836

Article Metrics

Metrics Loading ...

Metrics powered by PLOS ALM


  • Saat ini tidak ada refbacks.


Jumlah Kunjungan Harian

Satu bulan terakhir

Tampilkan laporan lengkap Google Analyticsdi sini

Laman ini dikelola oleh:
Bio Publisher
The Faculty of Biology Publishing

Laman ini dikelola oleh:
Penerbitan Fakultas Biologi
Universitas Jenderal Soedirman
Jalan dr. Suparno 63 Grendeng
Purwokerto 53122

Telepon: +62-281-625865

Laman ini menggunakan:
OJS | Open Journal System
Software pengelolaan jurnal ilmiah online. Versi yang digunakan adalah

Metadata artikel terdaftar di:
Agen resmi internasional pendaftaran Digital Object Identifier (DOI)

Artikel jurnal ini terindeks:

Daftar indeks »